Integral transforms, convolution products, and first variations

نویسندگان

  • Bongjin Kim
  • Byoung Soo Kim
  • David L. Skoug
چکیده

We establish the various relationships that exist among the integral transform Ᏺ α,β F , the convolution product (F * G) α , and the first variation δF for a class of functionals defined on K[0,T ], the space of complex-valued continuous functions on [0,T ] which vanish at zero. 1. Introduction and definitions. In a unifying paper [10], Lee defined an integral transform Ᏺ α,β of analytic functionals on an abstract Wiener space. For certain values of the parameters α and β and for certain classes of functionals, the Fourier-Wiener transform [2], the Fourier-Feynman transform [3], and the Gauss transform are special cases of his integral transform Ᏺ α,β. In [5], Chang et al. established an interesting relationship between the integral transform and the convolution product for functionals on an abstract Wiener space. In this paper, we study the relationships that exist among the integral transform, the convolution product, and the first variation [1, 4, 9, 11]. Let C 0 [0,T ] denote one-parameter Wiener space, that is, the space of all real-valued continuous functions x(t) on [0,T ] with x(0) = 0. Let ᏹ denote the class of all Wiener measurable subsets of C 0 [0,T ] and let m denote Wiener measure. Then (C 0 [0,T ],ᏹ, m) is a complete measure space and we denote the Wiener integral of a Wiener inte-grable functional F by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Volterra Integral Equations of the Second Kind with Convolution ‎Kernel‎

In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad ‎et al., ‎‎[K. Maleknejad ‎and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, ‎Appl. Math. Comput.‎ (2005)]‎ to gain...

متن کامل

Estimates for Overdetermined Radon Transforms

We prove several variations on the results in Ricci and Travaglini[RT] concerning L−L ′ bounds for convolution with all rotations of a measure supported by a fixed convex curve in R. Estimates are obtained for averages over higherdimensional convex (nonsmooth) hypersurfaces, smooth k-dimensional surfaces, and nontranslation-invariant families of surfaces. We compare the approach of [RT], based ...

متن کامل

Integral Transforms of Fourier Cosine Convolution Type

which has the following property Fc(f ∗ g)(x) = (Fcf)(x)(Fcg)(x). (3) The theory of integral transforms related to the Fourier and Mellin convolutions is well developed [2, 6, 10, 11, 12, 13, 19] and has many applications. Some other classes of integral transforms, that are not related to any known convolutions, are considered in [14, 15]. In this paper we investigate integral transforms of the...

متن کامل

Henstock–Kurzweil Fourier transforms

The Fourier transform is considered as a Henstock–Kurzweil integral. Sufficient conditions are given for the existence of the Fourier transform and necessary and sufficient conditions are given for it to be continuous. The Riemann–Lebesgue lemma fails: Henstock– Kurzweil Fourier transforms can have arbitrarily large point-wise growth. Convolution and inversion theorems are established. An appen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004